Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell
نویسندگان
چکیده
منابع مشابه
Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell
BACKGROUND The microbial fuel cell (MFC) is a green and sustainable technology for electricity energy harvest from biomass, in which exoelectrogens use metabolism and extracellular electron transfer pathways for the conversion of chemical energy into electricity. However, Shewanella oneidensis MR-1, one of the most well-known exoelectrogens, could not use xylose (a key pentose derived from hydr...
متن کاملStandardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis.
Populations of metabolically active bacteria were associated at an electrode surface via vapor-deposition of silica to facilitate in situ characterization of bacterial physiology and bio-electrocatalytic activity in microbial fuel cells.
متن کاملChanges in Carbon Electrode Morphology Affect Microbial Fuel Cell Performance with Shewanella oneidensis MR-1
The formation of biofilm-electrodes is crucial for microbial fuel cell current production because optimal performance is often associated with thick biofilms. However, the influence of the electrode structure and morphology on biofilm formation is only beginning to be investigated. This study provides insight on how changing the electrode morphology affects current production of a pure culture ...
متن کاملHigh power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.
A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device cross-section (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated...
متن کاملOxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biotechnology for Biofuels
سال: 2017
ISSN: 1754-6834
DOI: 10.1186/s13068-017-0881-2